kimia

Uranium sebagai sumber Energi

Atom Uranium

Dalam tabel skala unsur-unsur yang diurutkan berdasarkan kenaikan massa inti atom, uranium adalah unsur terberat dari seluruh unsur alamiah (Hidrogen adalah yang paling ringan) dan diklasifikasikan sebagai logam. Uranium memiliki kerapatan atau masa jenis yang besar, sekitar 18,7 kali lipat dibanding air, dengan titik leleh yang relatif tinggi yaitu 1132 oC. Simbol kimiawi untuk unsur ini adalah U.

Seperti unsur lainnya, uranium memiliki beberapa isotop. Uranium alami sebagaimana yang terdapat dalam lapisan kerak bumi utamanya tersusun atascampuran isotop U-238 (99.3%) dan U-235 (0.7%). Isotop adalah elemen atau unsur yang memiliki nomor atom yang sama tetapi jumlah neutron atau berat atom-nya berbeda.

U-235 merupakan isotop uranium yang penting, sebab dalam kondisi tertentu inti ini dapat dibelah yang diikuti dengan pelepasan energi dalam jumlah besar (sekitar 200 MeV per-pembelahan). Reaksi pembelahan inti atom dikenal dengan ”fisi nuklir”, dan isotop U-235 disebut sebagai ”bahan fisil”.

Seperti isotop radioaktif lainnya, uranium juga mengalami peluruhan. U-238 meluruh dalam jangka waktu yang panjang dengan waktu paro yang sama dengan umur bumi (4500 juta tahun). Ini dapat diartikan U-238 hampir tidak radioaktif jika dibandingkan dengan isotop lain di lapisan batuan dan tanah. Namun demikian peluruhan U-238 menghasilkan energi 0,1 watt/ton dalam bentuk panas. Energi peluruhan ini cukup untuk menghangatkan inti bumi. Adapun U-235 meluruh dalam jangka waktu sedikit lebih cepat dibanding U-238 (sekitar 700 juta tahun).

Isotop uranium U-238 dan U-235 adalah pemancar radiasi alpha dengan energi cukup rendah dan dapat ditahan oleh selembar kertas. Bahaya radiasi akan muncul apabila isotop uranium masuk ke dalam tubuh karena akan merusak jaringan dan dapat menimbulkan penyakit kanker.

Penyiapan Bahan Bakar Uranium

Bijih uranium dapat ditambang melalui metode terowongan atau metode tambang terbuka, tergantung dari kedalamannya. Setelah ditambang, bijih dihancurkan dan diolah dengan asam untuk melarutkan uranium, yang kemudian uranium dipungut dari larutan.

Uranium juga dapat ditambang dengan metode pemisahan dari batuan langsung di tempat (in situ leaching / ISL), dimana Uranium dilarutkandari batuan berpori bijih bawah tanah dan dipompa ke permukaan.

Produk akhir dari penambangan dan pengolahan bijih, atau ISL, adalah konsentrat uranium oksida (U3O8) yang dikenal dengan istilah ”Yellow Cake” . Dalam bentuk inilah Uranium diperjual-belikan.

Yellow cake, material mentah uranium sebelum diperkaya (secara isotop) untuk dijadikan bahan bakar nuklir.

Yellow cake, material mentah uranium sebelum diperkaya (secara isotop) untuk dijadikan bahan bakar nuklir.

Sebelum dapat digunakan dalam reaktor untuk pembangkitan listrik, uranium oksida hasil penambangan harus melalui serangkaian proses. Untuk sebagian besar bahan bakar reaktor nuklir di dunia, langkah berikutnya mengubah uranium oksida menjadi dalam bentuk gas, uranium heksafluorida (UF6) murni nuklir. Konversi ini diperlukan dalam proses pengayaan uranium.

Pengayaan adalah meningkatkan proporsi U-235 dari level alaminya (0,7%) menjadi 3 – 5%. Proporsi ini akan meningkatkan efesiensi teknis dalam desain dan operasi reaktor, terutama pada reaktor besar dan memungkinkan penggunaan air sebagai moderator.

Setelah pengayaan, gas UF6 diperkaya diubah menjadi serbuk uranium dioksida (UO2) yang kemudian difabrikasi menjadi pelet bahan bakar. Pelet-pelet selanjutnya diletakkan dalam kelongsong logam dan dirakit menjadi perangkat bakar nuklir yang siap digunakan di dalam teras reaktor.

Untuk reaktor yang menggunakan uranium alam sebagai bahan bakar (yang-mana akan memerlukan grafit atau air berat sebagai moderator), Yellow Cake dapat langsung diubah menjadi serbuk UO2 murni nuklir melalui proses pemurnian dan konversi yang lebih sederhana.

Ketika perangkat bakar uranium sudah berada dalam reaktor selama 3 – 6 tahun, perangkat bakar dikeluarkan dari teras reaktor, dipindahkan, disimpan sementara untuk kemudian diproses ulang, atau disimpan lestari di bawah tanah.

Energi dari atom Uranium

Inti atom dari U-235 terdiri dari 92 proton dan 143 neutron (92+143=235). Saat sebuah inti atom U-235 menangkap neutron, ia akan membelah menjadi dua inti atom baru dan melepaskan sejumlah energi dalam bentuk panas, disertai pelepasan 2 atau 3 neutron baru.

Jika neutron yang dilepaskan tersebutdapat memicu reaksi yang sama pada atom U-235 lainnya, dan melepaskan neutron baru lain, reaksi fisi berantai dapat terjadi. Reaksi ini dapat terjadi dan terjadi lagi, hingga berjuta-juta kali, maka energi panas dalam jumlah sangat besar dapat dihasilkan dari sedikit Uranium. Secara kasar energi panas dari reaksi inti 1 gram U-235 adalah sama dengan energi panas dari pembakaran 1 ton batubara.

reaksi fisi uranium yang berlangsung di dalam reaktor nuklir

Proses membelah atau “membakar” uranium secara berantai dan terkendali adalah sebagaimana yang terjadi di dalam reaktor nuklir. Panas yang dihasilkan digunakan untuk membangkitkan uap air, dan selanjutnya uap air digunakan untuk memutar turbin dan akhirnya menghasilkanlistrik.

Tabel berikut memberikan gambaran tentang bertapa besarnya kandungan energi dalam bahan bakar uranium dibandingkan sumber energi lainnya.

Kandungan Energi dalam 1 ton berat (GJ)
Kayu 14
Batubara 29
Minyak 42
Gas alam (cair) 46
Uranium (bahan bakar PLTN – PWR) 630.000

Uranium di dalam Reaktor

Di dalam sebuah reaktor nuklir, bahan bakar uranium dirakit dalam bentuk tertentu sedemikian hingga reaksi fisi berantai yang terkendali dapat dicapai. Panas yang dihasilkan dari pembelahan U-235 kemudian digunakan untuk membangkitkan uap yang akan memutar turbin dan menggerakkan generator untuk menghasilkan listrik.

Pada dasarnya PLTN dan PLT Fosil, dengan kapasitas yang sama, memiliki banyak kemiripan. Keduanya membutuhkan panas untuk menghasilkan uap guna memutar turbin dan generator. Dalam PLTN, fisi atom uranium menggantikan pembakaran batubara atau gas.

Reaksi fisi berantai yang berlangsung di dalam teras reaktor nuklir dikendalikan oleh batang kendali yang mempunyai sifat menyerap neutron dan dapat ditarik/didorong untuk mengatur reaktor pada tingkat daya yang dibutuhkan.

Di dalam teras reaktor yang menerapkan konsep fisi thermal sebagaimana reaktor PLTN komersial saat ini, bahan bakar uranium dikelilingi oleh materi yang disebut moderator. Bahan ini berfungsi untuk memperlambat kecepatan neutron yang dihasilkan dari reaksi reaksi fisi sehingga memungkinkan terjadinya reaksi berantai. Air, grafit dan air berat biasa digunakan sebagai moderator dalam berbagai jenis reaktor.

Karena jenis bahan bakar yang digunakan (konsentrasi U-235 dalam bahan bakar uranium hanya 3 – 5%),maka apabilaterjadi malfungsi yang fatal dalam reaktor, bahan bakar dapat saja menjadi terlalu panas dan meleleh, akan tapi tidak dapat meledak seperti bom nuklir.

sumber: http://www.infonuklir.com/

Categories: fisika, kimia, sains | Tags: | Leave a comment

Uranium

LONDON - Penamaan uranium ternyata berasal dari nama planet di sistem tata surya, yakni Uranus. Beberapa tahun lalu elemen uranium di temukan di planet tersebut. Penamaan Uranus sendiri berasal dari sebuah dewa langit Yunani.

Dilansir Guardian uranium lebih melimpah dan luas ketimbang yang diperkirakan orang. Bahkan, unsur kimia tersebut kabarnya bisa ditemukan pada batu, tanah dan air, di mana kandungannya justru lebih banyak daripada perak.

Uranium juga merupakan elemen terbesar yang ditemukan di Bumi. Di alam bebas, hampir seluruh uranium merupakan isotop uranium-238 (99,27 persen). Uranium merupakan radioaktif dan bisa memancarkan partikel alpha (dua proton dan dua neutron terikat).

Terdapat jenis uranium selain uranium-238, yakni uranium-235 yang kabarnya memiliki masa aktif selama ratusan juta tahun. Uranium disimbolkan dengan ‘U’ dan nomor atom 92.

Uranium murni adalah logam berwarna perak-putih yang lebih keras daripada elemen lainnya. Unsur kimia yang menjadi bahan dasar untuk teknologi nuklir ini sangat padat, kira-kira 70 persen lebih padat dari unsur kimia lain.

Meskipun kepadatannya masih kalah ketimbang emas atau tungsten (logam berat berwarna kelabu kehitam-hitamanan), namun uranium bisa dimanfaatkan sebagai penyeimbang dalam pesawat terbang. Dahulu, sebelum ditemukan bahwa uranium merupakan radioaktif, elemen ini banyak digunakan untuk mewarnai kaca, tembikar dan glasir (lapisan keras pada porselen atau keramik).

Di Bumi, adanya uranium radioaktif (bersama dengan torium dan kalium-40) bisa menjaga Bumi agar tetap hangat. Uranium merupakan unsur beracun yang kabarnya bisa menyebabkan gagal ginjal.

 

Categories: kimia, sains | Tags: | Leave a comment

Isotop, Radioisotop, Radiasi dan Waktu Paruh

1. Isotop

Salah satu teori Dalton menyatakan bahwa atom-atom dari unsur yang sama memiliki massa yang sama. Pendapat Dalton ini tidak sepenuhnya benar. Kini diketahui bahwa atom-atom dari unsur yang sama dapat memiliki massa yang berbeda. Fenomena semacam ini disebut isotop.

Isotop adalah unsur-unsur sejenis yang memiliki nomor atom sama, tetapi memiliki massa atom berbeda atau unsur-unsur sejenis yang memiliki jumlah proton sama, tetapi jumlah neutron berbeda. Sebagai contoh, atom oksigen memiliki tiga isotop, yaitu:

_{8}^{16}\textrm{O}, _{8}^{17}\textrm{O},_{8}^{18}\textrm{O}

2. Radioisotop

Radionuklida atau Radioisotop adalah isotop dari zat radioaktif. Radionuklida mampu memancarkan radiasi. Radionuklida dapat terjadi secara alamiah atau sengaja dibuat oleh manusia dalam reaktor penelitian. Produksi radionuklida dengan proses aktivasi dilakukan dengan cara menembaki isotop stabil dengan neutron di dalam teras reaktor. Proses ini lazim disebut irradiasi neutron, sedangkan bahan yang disinari disebut target atau sasaran. Neutron yang ditembakkan akan masuk ke dalam inti atom target sehingga jumlah neutron dalam inti target tersebut bertambah. Peristiwa ini dapat mengakibatkan ketidakstabilan inti atom sehingga berubah sifat menjadi radioaktif.

Radionuklida yang berdasarkan asalnya dibagi atas 2 kategori:

  1. Radionuklida alamiah: radionuklida yang terbentuk secara alami, terbagi menjadi dua yaitu:
    – Primordial: radionuklida ini telah ada sejak bumi diciptakan.
    – Kosmogenik: radionuklida ini terbentuk sebagai akibat dari interaksi sinar kosmik.
  2. Radionuklida buatan manusia: radionuklida yang terbentuk karena dibuat oleh manusia.

Radionuklida terdapat di udara, air, tanah, bahkan di tubuh kita sendiri. Setiap hari kita terkena radiasi, baik dari udara yang kita hirup, dari makanan yang kita konsumsi maupun dari air yang kita minum. Tidak ada satupun tempat di bumi ini yang bebas dari radiasi.

Radionuklida alamiah

Primordial

Radionuklida primordial telah ada sejak alam semesta terbentuk. Pada umumnya, radionuklida ini mempunyai umur-paro yang panjang. Tabel berikut memperlihatkan beberapa radionuklida primordial.

Tabel Radionuklida Primordial
Nuklida Lambang Umur-paro Keterangan
Uranium 235 235U 7,04×108 tahun 0,72% dari uranium alam
Uranium 238 238U 4,47×109 tahun 99,2745% dari uranium alam; pada batuan terdapat 0,5 – 4,7 ppm uranium alam
Thorium 232 232Th 1,41×1010 tahun Pada batuan terdapat 1,6 – 20 ppm.
Radium 226 226Ra 1,60×103 tahun Terdapat di batu kapur
Radon 222 222Rn 3,82 hari Gas mulia
Kalium 40 40K 1,28×109 tahun Terdapat di tanah

Kosmogenik

Sumber radiasi kosmik berasal dari luar sistem tata surya kita, dan dapat berupa berbagai macam radiasi. Radiasi kosmik ini berinteraksi dengan atmosfir bumi dan membentuk nuklida radioaktif yang sebagian besar mempunyai umur-paro pendek, walaupun ada juga yang mempunyai umur-paro panjang. Tabel berikut memperlihatkan beberapa radionuklida kosmogenik.

Tabel Radionuklida Kosmogenik
Nuklida Lambang Umur-paro Sumber
Karbon 14 14C 5.730 tahun Interaksi 14N(n,p)14C
Tritium 3 3H 12,3 tahun Interaksi 6Li(n,a)3H
Berilium 7 7Be 53,28 hari Interaksi sinar kosmik dengan unsur N dan O

Buatan Manusia

Manusia telah menggunakan bahan radioaktif selama lebih dari 100 tahun. Tabel berikut memperlihatkan beberapa radionuklida buatan manusia.

Tabel Radionuklida Buatan Manusia
Nuklida Lambang Umur-paro Sumber
Tritium 3 3H 12,3 tahun Dihasilkan dari uji-coba senjata nuklir, reaktor nuklir, dan fasilitas olah-ulang bahan bakar nuklir.
Iodium 131 131I 8,04 hari Produk fisi yang dihasilkan dari uji-coba senjata nuklir, reaktor nuklir. 131I sering digunakan untuk mengobati penyakit yang berkaitan dengan kelenjar thyroid.
Iodium 129 129I 1,57×107 tahun Produk fisi yang dihasilkan dari uji-coba senjata nuklir dan reaktor nuklir.
Cesium 137 137Cs 30,17 tahun Produk fisi yang dihasilkan dari uji-coba senjata nuklir dan reaktor nuklir.
Stronsium 90 90Sr 28,78 tahun Produk fisi yang dihasilkan dari uji-coba senjata nuklir dan reaktor nuklir.
Technesium 99m 99mTc 6,03 jam Produk peluruhan dari 99Mo, digunakan dalam diagnosis kedokteran.
Technesium 99 99Tc 2,11×105 tahun Produk peluruhan 99mTc.
Plutonium 239 239Pu 2,41×104 tahun Dihasilkan akibat 238U ditembaki neutron.

 

3. Radiasi

Radiasi dapat diartikan sebagai energi yang dipancarkan dalam bentuk partikel atau gelombang. Jika suatu inti tidak stabil, maka inti mempunyai kelebihan energi. Inti itu tidak dapat bertahan, suatu saat inti akan melepaskan kelebihan energi tersebut dan mungkin melepaskan satu atau dua atau lebih partikel atau gelombang sekaligus.

Setiap inti yang tidak stabil akan mengeluarkan energi atau partikel radiasi yang berbeda. Pada sebagian besar kasus, inti melepaskan energi elektromagnetik yang disebut radiasi gamma, yang dalam banyak hal mirip dengan sinar-X.

Sinar-X merupakan jenis radiasi yang paling banyak ditemukan dalam kegiatan sehari-hari. Semua sinar-X di bumi ini dibuat oleh manusia dengan menggunakan peralatan listrik tegangan tinggi. Alat pembangkit sinar-X dapat dinyalakan dan dimatikan. Jika tegangan tinggi dimatikan, maka tidak akan ada lagi radiasi. Sinar-X dapat menembus bahan, misalnya jaringan tubuh, air, kayu atau besi, karena sinar-X mempunyai panjang gelombang yang sangat pendek. Sinar-X hanya dapat ditahan secara efektif oleh bahan yang mempunyai kerapatan tinggi, misalnya timah hitam (Pb) atau beton tebal.

Radiasi gamma bergerak lurus dan mampu menembus sebagian besar bahan yang dilaluinya. Radiasi gamma mempunyai sifat yang serupa dengan sinar-X, namun radiasi gamma berasal dari inti atom. Karena berasal dari inti atom, radiasi gamma akan memancar secara terus-menerus, dan tidak dapat dinyalakan atau dimatikan seperti halnya sinar-X. Radiasi gamma yang terdapat di alam terutama berasal dari bahan-bahan radioaktif alamiah, seperti radium atau kalium radioaktif. Beberapa inti atom yang dapat memancarkan radiasi gamma juga dapat dibuat oleh manusia.

Dalam banyak kasus, inti juga melepaskan radiasi beta. Radiasi beta lebih mudah untuk dihentikan. Seng atap atau kaca jendela dapat menghentikan radiasi beta. Bahkan pakaian yang kita pakai dapat melindungi dari radiasi beta.

Unsur-unsur tertentu, terutama yang berat seperti uranium, radium dan plutonium, melepaskan radiasi alfa. Radiasi alfa dapat dihalangi seluruhnya dengan selembar kertas. Radiasi alfa tidak dapat menembus kulit kita. Radiasi alfa sangat berbahaya hanya jika bahan-bahan yang melepaskan radiasi alfa masuk kedalam tubuh kita.

Pemancaran radiasi dari suatu bahan radioaktif tidak dapat dimatikan atau dimusnahkan. Pemancaran radiasi hanya akan berkurang secara alamiah. Akibat memancarkan radiasi, suatu bahan radioaktif akan melemah aktivitasnya (kekuatannya), disebut peluruhan.

Setiap radioisotop akan berkurang atau melemah separo dari aktivitas awalnya dalam jangka waktu tertentu, yang bervariasi dari beberapa detik hingga milyaran tahun, bergantung pada jenis radioisotopnya. Jangka waktu tertentu tersebut disebut Waktu Paruh

4. Waktu Paruh (half life)
“waktu paruh radioaktif adalah periode waktu yang diperlukan zat radioaktif untuk meluruh menjadi separo.”

kenapa zat radioaktif mempunyai waktu paro? karena hanya atom yang tidak stabil yang mempunyai waktu paro. atom yang tidak stabil akan meluruh dan lamanya peluruhan ini tergantung pada waktu paronya.

waktu paruh dari suatu zat radioaktif selalu sama dan tidak bergantung pada jumlah zat mula-mula. tidak peduli dengan suhu, kombinasi kimianya atau kondisi lainnya.

walaupun begitu, setiap zat radioaktif berbeda beda waktu paronya. ada zat radioaktif yang sangat cepat meluruhnya sehingga separuh atomnya meluruh hanya kurang dari satu detik (misalnya Lithium-8, waktu paronya hanya 0.85 detik). ada juga yang sangat lambat sehingga perlu waktu miliaran tahun untuk meluruh menjadi tinggal separo (misalnya Uranium-238, waktu paronya 4.51 miliar tahun).

Sebagai contoh, umur-paro radium adalah 1.622 tahun; artinya, aktivitas radium akan berkurang setengahnya dalam 1.622 tahun, setengah aktivitas sisanya akan berkurang lagi dalam waktu 1.622 tahun berikutnya, dan seterusnya.

Mereka meluruh menjadi zat apa, juga tergantung pada zat asalnya. ada yang meluruh menjadi zat radioaktif lainnya, ada juga yang tidak (menjadi stabil).  contoh beryllium 11 memiliki waktu paruh 13.81 detik dan meluruh menjadi boron 11. Ini artinya dalam 13.81 detik, separuh berylium 11 akan menjadi boron 11.

Darimana kita tau kalau fosil dinosaurus berusia sekian ratus juta tahun? nah, manfaat dari waktu paro adalah menentukan usia suatu benda. yang terkenal dari penentuan usia adalah dengan menggunakan teknik radiokarbon.

Pengertian umur-paro

Categories: fisika, kimia, sains | Leave a comment

Resonansi dan Resonansi Ganda

Resonansi didefinisikan sebagai frekuensi (getaran) selaras dari dua materi yang berbeda.

Contoh sederhana dari pengalaman sehari-hari akan menjelaskan apa yang disebut para ahli fisika sebagai “resonansi atomik”. Bayangkan, Anda bermain ayunan bersama anak Anda di taman bermain. Si kecil duduk di atas ayunan dan Anda mendorongnya untuk memulai ayunan. Untuk menjaga ayunan terus mengayun, Anda harus mendorongnya dari belakang. Namun, waktu memberikan dorongan ini sangat penting. Setiap kali ayunan mendekat, Anda harus memberikan dorongan tepat pada waktunya: ketika ayunan berada pada titik tertinggi dari gerakan-nya menuju Anda. Jika Anda mendorong terlalu awal, hasilnya adalah tabrakan yang mengganggu irama ayunan; jika Anda terlambat mendorong, usaha tersebut akan sia-sia karena ayunan telah bergerak menjauh. Dengan kata lain, frekuensi dorongan harus selaras dengan frekuensi ayunan menuju Anda.

Seperti halnya dua benda atau lebih yang bergerak dapat beresonansi, resonansi juga dapat terjadi ketika satu benda bergerak menyebabkan gerakan pada benda lain. Resonansi jenis ini sering terlihat pada alat musik dan disebut “resonansi akustik”. Ini dapat terjadi, misalnya, di antara dua biola yang telah disetel selaras. Jika salah satu dari biola ini dimainkan di dalam satu ruangan dengan biola yang lain, senar biola kedua akan bergetar walaupun tidak ada seorang pun yang menyentuhnya. Karena kedua alat musik telah disesuaikan dengan teliti sampai pada frekuensi yang sama, getaran pada satu biola menyebabkan getaran pada biola yang lain.

Resonansi dalam kedua contoh di atas adalah bentuk resonansi yang sederhana dan mudah untuk dipahami. Ada bentuk resonansi lain dalam ilmu fisika yang tidak sederhana, dan dalam kasus inti atom, resonansi dapat begitu rumit dan peka.

Setiap inti atom memiliki tingkat energi alamiah yang telah berhasil diketahui setelah penelitian panjang para ahli fisika. Tingkat energi ini sangat berbeda antara satu atom dan atom yang lain, namun dalam beberapa kejadian yang sangat jarang dapat diamati adanya resonansi di antara beberapa inti atom. Ketika resonansi tersebut terjadi, gerakan inti atom saling selaras seperti halnya pada contoh ayunan dan biola. Hal yang penting dari kejadian ini adalah resonansi mendorong reaksi nuklir yang mempengaruhi inti atom.

Ketika menyelidiki bagaimana karbon dibuat oleh raksasa merah, Edwin Salpeter menyarankan adanya resonansi antara inti atom helium dan berilium yang mendorong reaksi tersebut. Resonansi ini, menurutnya, membuat atom-atom helium lebih mudah berfusi menjadi berilium, dan ini menyebabkan reaksi di raksasa merah. Namun, penelitian selanjutnya gagal untuk mendukung gagasan ini.

Fred Hoyle adalah ahli astronomi kedua yang menjawab pertanyaan ini. Hoyle mengembangkan gagasan Salpeter lebih lanjut, dengan memperkenalkan gagasan “resonansi ganda”. Hoyle menyebutkan harus terdapat dua resonansi: satu yang menyebabkan dua helium berfusi menjadi berilium, dan satu lagi menyebabkan helium ketiga bergabung dengan formasi yang tidak stabil ini. Tak seorang pun percaya kepada Hoyle. Gagasan resonansi selaras yang terjadi sekali saja sudah sulit untuk diterima; apalagi resonansi tersebut terjadi dua kali, sama sekali tidak terpikirkan. Hoyle menekuni penelitiannya selama bertahun-tahun, dan pada akhirnya dia membuktikan bahwa gagasannya benar: Sungguh-sungguh terjadi resonansi ganda pada raksasa merah. Tepat pada saat dua atom helium beresonansi untuk bergabung, atom berilium muncul dalam satu per-juta-miliar detik yang diperlukan untuk menghasilkan karbon.

Categories: fisika, kimia, sains | Tags: | Leave a comment

Raksasa Merah

Suhu yang diperlukan untuk melawan keengganan inti atom berubah adalah mendekati 10 juta derajat Celsius. Inilah yang menyebabkan alkimia hanya mungkin terjadi di bintang. Dalam bintang berukuran sedang seperti Matahari, energi luar biasa banyaknya yang dipancarkan berasal dari hidrogen yang bergabung menjadi helium.

Para ahli astronomi percaya bahwa bintang sejenis matahari terbentuk dari nebula (awan kosmis) yang terdiri dari hidrogen dan helium yang dimampatkan sampai reaksi termonuklir hidrogen menjadi helium terjadi. Jadi, sekarang kita memiliki bintang-bintang. Namun alam semesta masih tanpa kehidupan. Untuk kehidupan, unsur yang lebih berat khususnya, oksigen dan karbon diperlukan. Diperlukan proses lain untuk mengubah hidrogen dan helium menjadi unsur lain lagi.

“Pabrik pengolahan” unsur-unsur berat ini ternyata adalah raksasa-raksasa merah jenis bintang yang lima puluh kali lebih besar daripada matahari.

Raksasa merah jauh lebih panas daripada bintang jenis matahari dan sifat ini menjadikan mereka berkemampuan melakukan sesuatu yang tidak dapat dilakukan bintang lain: mengubah helium menjadi karbon. Bahkan, ini juga tidak mudah bagi raksasa merah. Seperti diungkapkan oleh ahli astronomi Greenstein: “Bahkan sekarang, setelah jawaban (seperti untuk pertanyaan bagaimana mereka melakukannya) diketahui, metode yang diperlukan begitu mencengangkan.”32

Nomor atom helium adalah 2: yaitu memiliki dua proton dalam inti-nya. Nomor atom karbon adalah 6. Dalam suhu yang begitu tinggi pada raksasa merah, tiga atom helium bergabung menjadi atom karbon. Inilah “alkimia” yang menyediakan unsur lebih berat bagi alam semesta setelah Dentuman Besar.

Namun seperti kami sebutkan, ini tidaklah mudah. Hampir tidak mungkin untuk menggabungkan dua atom helium, dan sangat tidak mungkin menggabungkan tiga atom. Lantas, bagaimana enam proton yang diperlukan karbon dapat bergabung?

Ini adalah proses dua langkah. Pertama, dua atom helium berfusi menjadi unsur antara yang memiliki empat proton dan empat neutron. Selanjutnya, helium ketiga berfusi dengan unsur antara ini untuk membentuk karbon dengan enam proton dan enam neutron.

Unsur antara tersebut adalah berilium. Berilium biasa ditemukan di bumi, namun berilium yang ada di raksasa merah berbeda dalam hal yang sangat penting: terdiri dari empat proton dan empat neutron, sementara berilium di bumi memiliki lima neutron. “Berilium raksasa-merah” merupakan jenis yang berbeda. Inilah yang disebut “isotop” dalam ilmu kimia.

Sekarang muncullah kejutan sesungguhnya. Isotop tersebut rupa-nya sama sekali tidak stabil. Para ilmuwan telah meneliti isotop ini bertahun-tahun dan mendapati bahwa setelah terbentuk, isotop ini akan meluruh dalam waktu 0,000000000000001 (satu per-juta-miliar) detik.

Bagaimana isotop berilium yang begitu tidak stabil, yang terbentuk dan meluruh dalam waktu sangat singkat, mampu bergabung dengan helium menjadi atom karbon? Bagaimana proses ini berlangsung di raksasa merah? Para ahli fisika telah berusaha memecahkan teka-teki ini selama beberapa dekade tanpa jawaban. Ahli astrofisika Amerika, Edwin Salpeter, akhirnya menemukan petunjuk untuk misteri ini dalam konsep “resonansi atomik“.

Categories: kimia, sains | Tags: | Leave a comment

Struktur Atom

Para ilmuwan juga bersepakat bahwa dua unsur pertama yang paling sederhana-hidrogen dan helium-mulai terbentuk dalam empat belas detik pertama setelah Dentuman Besar. Kedua unsur itu terbentuk sebagai hasil reduksi/pengurangan dalam entropi alam semesta yang menyebabkan materi tersebar ke mana-mana. Dengan kata lain, pada awalnya alam semesta hanya sebuah kumpulan atom hidrogen dan helium. Jika tetap seperti itu, lagi-lagi tidak akan ada bintang, planet, batu, tanah, pohon, atau manusia. Alam semesta akan menjadi jagat raya tanpa kehidupan, yang terdiri hanya dari kedua unsur itu.

Struktur Unsur-Unsur

Kimia adalah ilmu alam yang mempelajari senyawa, struktur, dan sifat-sifat zat dan perubahan yang mereka alami. Dasar kimia modern adalah tabel periodik unsur. Pertama kali diperkenalkan oleh ahli kimia Rusia, Dmitry Ivanovich Mendeleyev, unsur-unsur dalam tabel periodik disusun menurut struktur atom mereka. Hidrogen menempati posisi pertama dalam tabel karena hidrogen adalah unsur paling sederhana, yang terdiri dari hanya satu proton dalam nukleus/intinya dan satu elek-tron yang mengitarinya.

Proton adalah partikel subatomik yang membawa muatan listrik po-sitif dalam nukleus atom. Helium, dengan dua proton, menempati posisi kedua dalam tabel periodik. Karbon mempunyai enam proton dan oksi-gen mempunyai delapan proton. Semua unsur mengandung jumlah proton berbeda-beda.

Partikel lain yang terdapat di dalam inti atom adalah neutron. Tidak seperti proton, neutron tidak membawa muatan listrik: dengan kata lain mereka bermuatan netral, sehingga diberi nama neutron.

Partikel dasar ketiga yang membangun atom adalah elektron, yang bermuatan negatif. Dalam setiap atom, jumlah proton sama dengan jumlah elektron. Namun, tidak seperti proton dan neutron, elektron tidak berlokasi dalam nukleus. Alih-alih, mereka bergerak mengelilingi nukleus dengan kecepatan tinggi sehingga muatan positif dan negatif atom tetap terpisah.

Perbedaan dalam struktur atom (jumlah proton/elektron) adalah yang membuat unsur-unsur berbeda satu sama lain.

Aturan penting dalam kimia (klasik) adalah bahwa unsur-unsur tidak bisa berubah menjadi unsur lain. Mengubah besi (dengan 26 proton) menjadi perak (18 proton) akan mengharuskan penyingkiran delapan proton dari nukleus. Namun proton terikat jadi satu oleh gaya inti/nuklir yang kuat dan jumlah proton dalam nukleus hanya bisa diubah dengan reaksi nuklir. Tetapi reaksi yang terjadi pada kondisi bumi adalah reaksi kimia yang hanya bergantung pada pertukaran elektron dan tidak mempengaruhi nukleus.

Pada Abad Pertengahan muncul “sains” yang disebut alkimia (alchemy)-cikal bakal kimia modern. Ahli alkimia, yang tidak mengetahui tabel periodik atau struktur atom unsur-unsur, mengira bahwa mengubah satu unsur menjadi unsur lain bisa saja dilakukan. (Tujuan yang paling disukai, untuk alasan yang jelas, adalah mencoba mengubah besi menjadi emas.) Kita tahu sekarang bahwa yang dilakukan para ahli alkimia tidak mungkin tercapai di bawah kondisi normal seperti kondisi di bumi: Suhu dan tekanan yang diperlukan agar perubahan seperti itu terjadi terlalu besar untuk dicapai di laboratorium bumi. Namun perubahan itu mungkin jika Anda punya tempat yang tepat untuk melakukannya.

Dan tempat yang tepat, ternyata, di jantung bintang-bintang.

Categories: kimia, sains | Tags: | Leave a comment

Create a free website or blog at WordPress.com. The Adventure Journal Theme.

Follow

Get every new post delivered to your Inbox.